Inexact proximal Newton methods for self-concordant functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inexact proximal Newton methods for self-concordant functions

We analyze the proximal Newton method for minimizing a sum of a self-concordant function and a convex function with an inexpensive proximal operator. We present new results on the global and local convergence of the method when inexact search directions are used. The method is illustrated with an application to L1-regularized covariance selection, in which prior constraints on the sparsity patt...

متن کامل

Generalized Self-Concordant Functions: A Recipe for Newton-Type Methods

We study the smooth structure of convex functions by generalizing a powerful concept so-called self-concordance introduced by Nesterov and Nemirovskii in the early 1990s to a broader class of convex functions, which we call generalized self-concordant functions. This notion allows us to develop a unified framework for designing Newton-type methods to solve convex optimization problems. The prop...

متن کامل

Complexity of Inexact Proximal Newton methods

Recently several, so-called, proximal Newton methods were proposed for sparse optimization [6, 11, 8, 3]. These methods construct a composite quadratic approximation using Hessian information, optimize this approximation using a first-order method, such as coordinate descent and employ a line search to ensure sufficient descent. Here we propose a general framework, which includes slightly modif...

متن کامل

Self-adaptive inexact proximal point methods

We propose a class of self-adaptive proximal point methods suitable for degenerate optimization problems where multiple minimizers may exist, or where the Hessian may be singular at a local minimizer. If the proximal regularization parameter has the form μ(x)= β‖∇f (x)‖η where η ∈ [0,2) and β > 0 is a constant, we obtain convergence to the set of minimizers that is linear for η= 0 and β suffici...

متن کامل

Convergence analysis of inexact proximal Newton-type methods

We study inexact proximal Newton-type methods to solve convex optimization problems in composite form: minimize x∈Rn f(x) := g(x) + h(x), where g is convex and continuously differentiable and h : R → R is a convex but not necessarily differentiable function whose proximal mapping can be evaluated efficiently. Proximal Newton-type methods require the solution of subproblems to obtain the search ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Methods of Operations Research

سال: 2016

ISSN: 1432-2994,1432-5217

DOI: 10.1007/s00186-016-0566-9